Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Displays ; : 102144, 2021.
Article in English | ScienceDirect | ID: covidwho-1587952

ABSTRACT

Radiomics based on lesion segmentation has been widely accepted for disease diagnosis;however, it is difficult to precisely determine the boundary for pneumonia due to its diffuse characteristics. In this study, we aimed to propose an automatic radiomics method using whole-lung segmentation in pneumonia discrimination and assist clinical practitioners in fast and accurate diagnosis. In the discovery set, data from 151 participants diagnosed with type A or B influenza virus pneumonia, 63 diagnosed with coronavirus disease 2019 (COVID-19) and 50 healthy participants were collected. The three groups of data were compared in pairs. A total of 117 radiomics features were extracted from whole-lung images segmented by a four-layer U-net. We then utilized a logistic regression model to train the model and used the area under the receiver operating characteristic curve (AUC) to assess its performance. The L1 regularization term was used in feature selection, and 10-fold cross-validation was used to tune the hyperparameters. Fourteen radiomics features were selected to classify influenza pneumonia and health, and the AUC was 0.957 (95% confidential interval (CI): 0.939, 0.976) in the training set and 0.914 (95% CI: 0.866, 0.963) in the testing set. Eighteen features were selected for COVID-19 and health, and the AUC was 0.949 (95% CI: 0.926, 0.973)in the training set and 0.911 (95% CI: 0.859, 0.963) in the testing set. Twenty-eight features were selected for influenza virus pneumonia and COVID-19, and the AUC was 0.895 (95% CI: 0.870, 0.920) in the training set and 0.839 (95% CI: 0.791, 0.887) in the testing set. The results show that the automatic radiomics model based on whole lung segmentation is effective in distinguishing influenza virus pneumonia, COVID-19 and health, and may assist in the diagnosis of influenza virus pneumonia and COVID-19.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3213-3216, 2021 11.
Article in English | MEDLINE | ID: covidwho-1566218

ABSTRACT

The wide spread of coronavirus pneumonia (COVID-19) has been a severe threat to global health since 2019. Apart from the nucleic acid detection, medical imaging examination is a vital diagnostic modality to confirm and treat the disease. Thus, implementing the automatic diagnosis of the COVID-19 bears particular significance. However, the limitations of data quality and size strongly hinder the clas-sification and segmentation performance and it also result in high misdiagnosis rate. To this end, we propose a novel full scale attention mechanism (FUSA) to capture more contextual dependencies of features, which enables the model easier to classify positive cases and improve the sensitivity. Specifically, FUSA parallelly extracts the information of channel domain and spatial domain, and fuses them together. The experimental study shows FUSA can significantly improve the COVID-19 automated diagnosis performance and eliminate false negative cases compared with other state-of-the-art ones.


Subject(s)
COVID-19 , Pneumonia , COVID-19 Testing , Humans , Pneumonia/diagnostic imaging , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL